首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2411篇
  免费   118篇
  国内免费   155篇
林业   432篇
农学   129篇
基础科学   51篇
  969篇
综合类   656篇
农作物   141篇
水产渔业   78篇
畜牧兽医   98篇
园艺   110篇
植物保护   20篇
  2024年   13篇
  2023年   53篇
  2022年   68篇
  2021年   43篇
  2020年   45篇
  2019年   54篇
  2018年   52篇
  2017年   85篇
  2016年   101篇
  2015年   121篇
  2014年   108篇
  2013年   143篇
  2012年   179篇
  2011年   280篇
  2010年   175篇
  2009年   210篇
  2008年   152篇
  2007年   161篇
  2006年   114篇
  2005年   93篇
  2004年   87篇
  2003年   65篇
  2002年   37篇
  2001年   31篇
  2000年   37篇
  1999年   25篇
  1998年   25篇
  1997年   25篇
  1996年   24篇
  1995年   13篇
  1994年   10篇
  1993年   12篇
  1992年   7篇
  1991年   13篇
  1990年   7篇
  1989年   5篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1981年   2篇
排序方式: 共有2684条查询结果,搜索用时 31 毫秒
21.
Hydrothermally converted biomass (hydrochar) is evaluated as a carbon‐rich soil amendment in addition to pyrogenic biochar. After assessing the suitability of hydrochar for use in agriculture, its environmental safety and comparing its chemistry with that of biochar, we describe a field trial established at Halle (Germany) under natural conditions for a temperate climate and without further external management practices. The main objective of our study was to analyse the stability and hence the C sequestration potential of composted chars over a period of 2 years. Four treatments (no amendment control, compost, co‐composted hydrochar and co‐composted biochar) in fourfold field replication were chosen to make a direct comparison of biochar and hydrochar under field conditions. The total organic carbon and total N increased in all treatments in comparison with the control but only in biochar‐amended treatments were N concentrations more stable. Composted biochar showed significantly more black carbon content in topsoil, sampled some months after application, compared with all other treatments. We show that hydrochar is less suitable for long‐term C sequestration in comparison with biochar but has potential for soil amelioration because it delivers essential nutrients. On the other hand, biochar is richer in polyaromatic C than hydrochar and therefore is more stable in the long term. We assessed biochar stability using the black carbon analysis of the different soil samples.  相似文献   
22.
Agroforestry systems provide diverse ecosystem services that contribute to farmer livelihoods and the conservation of natural resources. Despite these known benefits, there is still limited understanding on how shade trees affect the provision of multiple ecosystem services at the same time and the potential trade-offs or synergies among them. To fill this knowledge gap, we quantified four major ecosystem services (regulation of pests and diseases; provisioning of agroforestry products; maintenance of soil fertility; and carbon sequestration) in 69 coffee agroecosystems belonging to smallholder farmers under a range of altitudes (as representative of environmental conditions) and management conditions, in the region of Turrialba, Costa Rica. We first analyzed the individual effects of altitude, types of shade and management intensity and their interactions on the provision of ecosystem services. In order to identify potential trade-offs and synergies, we then analyzed bivariate relationships between different ecosystem services, and between individual ecosystem services and plant biodiversity. We also explored which types of shade provided better levels of ecosystem services. The effectiveness of different types of shade in providing ecosystem services depended on their interactions with altitude and coffee management, with different ecosystem services responding differently to these factors. No trade-offs were found among the different ecosystem services studied or between ecosystem services and biodiversity, suggesting that it is possible to increase the provision of multiple ecosystem services at the same time. Overall, both low and highly diversified coffee agroforestry systems had better ability to provide ecosystem services than coffee monocultures in full sun. Based on our findings, we suggest that coffee agroforestry systems should be designed with diversified, productive shade canopies and managed with a medium intensity of cropping practices, with the aim of ensuring the continued provision of multiple ecosystem services.  相似文献   
23.
本文结合吉林省实际,重点阐述了碳汇林业发展的必要性和重要性,指出了科技、人才对碳汇林业发展的支撑作用,强调了科技研发环节前移和发挥学术组织作用的战略选择。  相似文献   
24.
Turf management on golf courses entails frequent maintenance activities, such as mowing, irrigation and fertilisation, and relies on purchased inputs for optimal performance and aesthetic quality. Using life cycle assessment (LCA) methodology, this study evaluated energy use and greenhouse gas (GHG) emissions from management of two Swedish golf courses, divided into green, tee, fairway and rough, and identified options for improved management. Energy use and GHG emissions per unit area were highest for greens, followed by tees, fairways and roughs. However, when considering the entire golf course, both energy use and GHG emissions were mainly related to fairway and rough maintenance due to their larger area. Emissions of GHG for the two golf courses were 1.0 and 1.6 Mg CO2e ha−1 year−1 as an area-weighted average, while the energy use was 14 and 19 GJ ha−1 year−1. Mowing was the most energy-consuming activity, contributing 21 and 27% of the primary energy use for the two golf courses. In addition, irrigation and manufacturing of mineral fertiliser and machinery resulted in considerable energy use. Mowing and emissions associated with fertilisation (manufacturing of N fertiliser and soil emissions of N2O occurring after application) contributed most to GHG emissions. Including the estimated mean annual soil C sequestration rate for fairway and rough in the assessment considerably reduced the carbon footprint for fairway and turned the rough into a sink for GHG. Emissions of N2O from decomposition of grass clippings may be a potential hotspot for GHG emissions, but the high spatial and temporal variability of values reported in the literature makes it difficult to estimate these emissions for specific management regimes. Lowering the application rate of N mineral fertiliser, particularly on fairways, should be a high priority for golf courses trying to reduce their carbon footprint. However, measures must be adapted to the prevailing conditions at the specific golf course and the requirements set by golfers.  相似文献   
25.
Land use practices alter the biomass and structure of soil microbial communities. However, the impact of land management intensity on soil microbial diversity (i.e. richness and evenness) and consequences for functioning is still poorly understood. Here, we addressed this question by coupling molecular characterization of microbial diversity with measurements of carbon (C) mineralization in soils obtained from three locations across Europe, each representing a gradient of land management intensity under different soil and environmental conditions. Bacterial and fungal diversity were characterized by high throughput sequencing of ribosomal genes. Carbon cycling activities (i.e., mineralization of autochthonous soil organic matter, mineralization of allochthonous plant residues) were measured by quantifying 12C- and 13C-CO2 release after soils had been amended, or not, with 13C-labelled wheat residues. Variation partitioning analysis was used to rank biological and physicochemical soil parameters according to their relative contribution to these activities. Across all three locations, microbial diversity was greatest at intermediate levels of land use intensity, indicating that optimal management of soil microbial diversity might not be achieved under the least intensive agriculture. Microbial richness was the best predictor of the C-cycling activities, with bacterial and fungal richness explaining 32.2 and 17% of the intensity of autochthonous soil organic matter mineralization; and fungal richness explaining 77% of the intensity of wheat residues mineralization. Altogether, our results provide evidence that there is scope for improvement in soil management to enhance microbial biodiversity and optimize C transformations mediated by microbial communities in soil.  相似文献   
26.
Earthworms have been shown to produce contrasting effects on soil carbon (C) and nitrogen (N) pools and dynamics. We measured soil C and N pools and processes and traced the flow of 13C and 15N from sugar maple (Acer saccharum Marsh.) litter into soil microbial biomass and respirable C and mineralizable and inorganic N pools in mature northern hardwood forest plots with variable earthworm communities. Previous studies have shown that plots dominated by either Lumbricus rubellus or Lumbricus terrestris have markedly lower total soil C than uncolonized plots. Here we show that total soil N pools in earthworm colonized plots were reduced much less than C, but significantly so in plots dominated by contain L. rubellus. Pools of microbial biomass C and N were higher in earthworm-colonized (especially those dominated by L. rubellus) plots and more 13C and 15N were recovered in microbial biomass and less was recovered in mineralizable and inorganic N pools in these plots. These plots also had lower rates of potential net N mineralization and nitrification than uncolonized reference plots. These results suggest that earthworm stimulation of microbial biomass and activity underlie depletion of soil C and retention and maintenance of soil N pools, at least in northern hardwood forests. Earthworms increase the carrying capacity of soil for microbial biomass and facilitate the flow of N from litter into stable soil organic matter. However, declines in soil C and C:N ratio may increase the potential for hydrologic and gaseous losses in earthworm-colonized sites under changing environmental conditions.  相似文献   
27.
Ocean net pen production of Atlantic salmon is approaching 2 million metric tons (MT) annually and has proven to be cost- and energy-efficient. Recently, with technology improvements, freshwater aquaculture of Atlantic salmon from eggs to harvestable size of 4–5 kg in land-based closed containment (LBCC) water recirculating aquaculture systems (RAS) has been demonstrated as a viable production technology. Land-based, closed containment water recirculating aquaculture systems technology offers the ability to fully control the rearing environment and provides flexibility in locating a production facility close to the market and on sites where cost of land and power are competitive. This flexibility offers distinct advantages over Atlantic salmon produced in open net pen systems, which is dependent on access to suitable coastal waters and a relatively long transport distance to supply the US market. Consequently, in this paper we present an analysis of the investment needed, the production cost, the profitability and the carbon footprint of producing 3300 MT of head-on gutted (HOG) Atlantic salmon from eggs to US market (wholesale) using two different production systems—LBCC-RAS technology and open net pen (ONP) technology using enterprise budget analysis and carbon footprint with the LCA method. In our analysis we compare the traditional open net pen production system in Norway and a model freshwater LBCC-RAS facility in the US. The model ONP is small compared to the most ONP systems in Norway, but the LBCC-RAS is large compared to any existing LBCC-RAS for Atlantic salmon. The results need to be interpreted with this in mind. Results of the financial analysis indicate that the total production costs for two systems are relatively similar, with LBCC-RAS only 10% higher than the ONP system on a head-on gutted basis (5.60 US$/kg versus 5.08 US$/kg, respectively). Without interest and depreciation, the two production systems have an almost equal operating cost (4.30 US$/kg for ONP versus 4.37 US$/kg for LBCC-RAS). Capital costs of the two systems are not similar for the same 3300 MT of head-on gutted salmon. The capital cost of the LBCC-RAS model system is approximately 54,000,000 US$ and the capital cost of the ONP system is approximately 30,000,000 US$, a difference of 80%. However, the LBCC-RAS model system selling salmon at a 30% price premium is comparatively as profitable as the ONP model system (profit margin of 18% versus 24%, respectively), even though its 15-year net present value is negative and its return on investment is lower than ONP system (9% versus 18%, respectively). The results of the carbon footprint analysis confirmed that production of feed is the dominating climate aspect for both production methods, but also showed that energy source and transport methods are important. It was shown that fresh salmon produced in LBCC-RAS systems close to a US market that use an average US electricity mix have a much lower carbon footprint than fresh salmon produced in Norway in ONP systems shipped to the same market by airfreight, 7.41 versus 15.22 kg CO2eq/kg salmon HOG, respectively. When comparing the carbon footprint of production-only, the LBCC-RAS-produced salmon has a carbon footprint that is double that of the ONP-produced salmon, 7.01 versus 3.39 kg CO2eq/kg salmon live-weight, respectively.  相似文献   
28.
对多壁碳纳米管进行酸化处理,并采用原位聚合法制备了碳纳米管/聚氨酯复合材料。利用X射线光电子能谱分析(XPS)、电子扫描显微镜(SEM)、动态力学分析(DMA)研究了碳纳米管酸化与否对复合材料性能的影响。结果表明,碳纳米管经酸化处理后产生了羧基,碳纳米管的原位加入使得复合材料的储存模量和玻璃化转变温度都有所提高,而且经过酸化的碳纳米管对聚氨酯材料的改性要比未酸化碳纳米管对聚氨酯材料的改性效果更为显著。  相似文献   
29.
Under Mediterranean conditions, drought affects cereals production principally through a limitation of grain filling. In this study, the respective role of post‐anthesis photosynthesis and carbon remobilization and the contribution of flag leaf, stem, chaff and awns to grain filling were evaluated under Mediterranean conditions in durum wheat (Triticum turgidum var. durum) cultivars. For the purpose, we examined the effects of shading and excision of different parts of the plant and compared carbon isotope discrimination (Δ) in dry matter of flag leaf, stem, chaff, awns and grain at maturity and in sap of stem, flag leaf, chaff and awns, this last measurement providing information on photosynthesis during a short period preceding sampling. Source–sink manipulations and isotopic imprints of different organs on final isotope composition of the grain confirmed the high contribution of both carbons assimilated by ears and remobilized from stems to grain filling, and the relatively low contribution of leaves to grain filling. Grain Δ was highly and significantly associated with grain yield across treatments, suggesting the utilization of this trait as an indicator of source–sink manipulations effects on grain yield. Chaff and awns Δ were better correlated with grain Δ than stem and leaf Δ, indicating that chaff were more involved in grain filling than other organs. Moreover, in chaff, sap Δ was highly significantly correlated with dry matter Δ. These results suggest the use of Δ for a rapid and non‐destructive estimation of the variation in the contribution of different organs to grain filling.  相似文献   
30.
采用生物量法和重铬酸钾-硫酸氧化法测定全碳含量,对徐州市果树经济林的碳贮量、分布格局进行初步研究。徐州市果树经济林碳储量为39.21×104 t,其中,银杏18.45×104 t、梨3.82×104 t、苹果16.63×104 t、桃2.67×104 t。碳密度为8.7 t/hm2,并分析其空间分布特点。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号